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Abstract

We consider a semi-Markov chain, with a finite state space. Taking a censored history, we obtain
empirical estimators for the discrete semi-Markov kernel, renewal function and semi-Markov
transition function. We propose estimators for two different failure rate functions. We study
the strong consistency and the asymptotic normality for each estimator and we construct the
confidence intervals. We illustrate our results by a numerical example.

1 Preliminaries

Consider a finite state space E = {1, 2, . . . , s}, s <∞, and (Jn, Sn)n∈N a homogeneous discrete time Markov
renewal process (DTMRP ), where (Jn)n∈N, the visited states of the system, is an E− valued Markov chain
and (Sn)n∈N, the jump times of the process, is an N− valued process. Put Xn := Sn − Sn−1, n ∈ N

∗, for
the inter-jump times. The DTMRP is defined by the initial distribution α(i) := P(J0 = i) and by the
semi-Markov kernel q = (qij(·))i,j∈E , qij(k) := P(Jn+1 = j,Xn+1 = k | Jn = i), k ∈ N, where qij(0) := 0.

Denote by V = (pij)i,j∈E , pij := P(Jn+1 = j | Jn = i) =
∑

k≥0 qij(k), the transition matrix of (Jn)n∈N

and by f = (fij(·))i,j∈E the conditional distribution matrix of the sojourn times, fij(k) := P(Xn+1 = k |
Jn = i, Jn+1 = j) = qij(k)/pij , for pij 6= 0. Consider the matrix-valued functions Q = (Qij(·))i,j∈E and

ψ = (ψij(·))i,j∈E defined by Qij(k) := P(Jn+1 = j,Xn+1 ≤ k | Jn = i) =
∑k

l=0 qij(l) and by ψij(k) :=
∑k

n=0 q
(n)
ij (k), k ∈ N, where all the powers are in the matrix convolution sense. Let also Ψ = (Ψij(·))i,j∈E

be the matrix renewal function defined by Ψij(k) :=
∑k

n=0Q
(n)
ij (k) =

∑k
l=0 ψij(l).

The semi-Markov chain (Zk)k∈N associated to the DTMRP (J, S) is defined by Zk := JN(k), k ∈ N, where
N(k) := max{n ≥ 0 | Sn ≤ k} is the discrete time counting process of the number of jumps in [1, k] ⊂ N.
Let P =

(

Pij(·)
)

i,j∈E
be the transition matrix of the semi-Markov process Z, Pij(k) := P(Zk = j | Z0 =

i), k ∈ N. The associated Markov renewal equation is (see, e.g., Barbu et al. 2004)

P (k) = I − diag(Q(k) · 1s) + q ∗ P (k), k ∈ N, (1)

where 1s := (1, . . . , 1)t and diag(Q(k)·1s) is the diagonal matrix having the vector Q(k)·1s as main diagonal.
Solving the Markov renewal equation (1) we obtain that the unique solution is

P (k) =
[

ψ ∗ (I − diag(Q · 1s))
]

(k). (2)

All the results are given for a DTMRP which satisfies the following assumptions:
A1. The Markov chain (Jn)n∈N is irreducible;
A2. The mean sojourn times are finite, i.e.,

∑

k≥0 khi(k) < ∞ for any state i ∈ E, where hi(k) :=
P(Xn+1 = k | Jn = i) is the sojourn time distribution in state i;

A3. The DTMRP (Jn, Sn)n∈N is aperiodic.
Let us consider a sample path H (M) := (J0, X1, . . . , JN(M)−1, XN(M), JN(M), UM ) of the DTMRP

(Jn, Sn)n∈N, censored at time M ∈ N, where we set UM := M − SN(M).



For all i, j ∈ E and k ∈ N, k ≤ M, we define the empirical estimator of the discrete time semi-Markov

kernel qij(k) by q̂ij(k,M) := Nij(k,M)/Ni(M), where Ni(M) :=
∑N(M)−1

n=0 1{Jn=i} is the number of visits

to state i, up to time M and Nij(k,M) :=
∑N(M)

n=1 1{Jn−1=i,Jn=j,Xn=k} is the number of transitions from
i to j, up to time M, with sojourn time in state i equal to k. We stress the fact that the above empirical
estimator is an approached nonparametric maximum likelihood estimator, i.e., it maximizes the approached
likelihood function, obtained by neglecting the part corresponding to UM = M − SN(M).

Replacing q by its estimator in the expressions of Q,ψ,Ψ and P we obtain their corresponding estimators,
noted by Q̂, ψ̂, Ψ̂, P̂ . We can prove the strong consistency for the proposed estimators and the asymptotic
normality of q̂ij(k,M), ψ̂ij(k,M), P̂ij(k,M) (see Barbu and Limnios 2004b).

2 Failure rates estimation

Denote by T the lifetime of the system. Let E be partitioned into two subsets, U = {1, . . . , s1} for the up
states and D = {s1 + 1, . . . , s}, 0 < s1 < s, for the down states, with E = U ∪D and U ∩ D = ∅. We will
write all vectors and matrix-valued functions according to this partition. For instance, we have

U D

P (k) =

(

P11(k)
P21(k)

P12(k)
P22(k)

)

U
D

U D
α = (α1 α2) .

The reliability of the system at the moment k ∈ N is given by (see Barbu et al. 2004a)

R(k) = α1 · P11(k) · 1s1
= α1 ψ11 ∗ (I − diag(Q · 1s)11)1s1

.

We obtain the following estimator for the system reliability:

R̂(k,M) := α1 · P̂11(k,M) · 1s1
= α1

[

ψ̂11(·,M) ∗
(

I − diag(Q̂(·,M) · 1s)11

)]

(k)1s1
. (3)

In the sequel, we consider two different definitions of the failure rate function.
• BMP−failure rate function λ(k)
It is the usual failure rate, defined by Barlow et al. (1963) as the conditional probability that the failure

of the system occurs at time k, given that the system has worked until time k − 1 ( for the BMP−failure
rate of Markov chains, see Sadek and Limnios 2002; for the BMP−failure rate of continuous semi-Markov
systems see Ouhbi and Limnios 1998). The BMP− failure rate is defined by

λ(k) := P(T = k | T ≥ k) =

{

1 −R(k)/R(k − 1), R(k − 1) 6= 0
0, otherwise

, k ≥ 1, and λ(0) := 1 −R(0).

• RG−failure rate function r(k)
A new definition of the discrete failure rate is proposed by Roy and Gupta (1992) for solving some of the

problems raised by the use of the usual failure rate function λ(k) in discrete time. A detailed argument for
the introduction of the new definition of the failure rate function is given in Bracquemond et al. (2001) (see
Sadek and Limnios 2002 for the RG-failure rate of Markov chains). The RG− failure rate is defined by

r(k) :=

{

ln
[

R(k − 1)/R(k)
]

, k ≥ 1
− lnR(0), k = 0

.

The two failure rates are related by r(k) = − ln(1 − λ(k)). We propose the following estimators:

λ̂(k,M) :=

{

1 − R̂(k,M)

R̂(k−1,M)
, R̂(k − 1,M) 6= 0

0, otherwise
, k ≥ 1, r̂(k,M) :=

{

ln R̂(k−1,M)

R̂(k,M)
, k ≥ 1

− ln R̂(0,M), k = 0
.

λ̂(0,M) := 1 − R̂(0,M),



Theorem 1 For any fixed k ∈ N, the BMP−failure rate estimator λ̂(k,M) is strongly consistent, as M

tends to infinity, and we have
√
M [λ̂(k,M) − λ(k)]

D−−−−→
M→∞

N (0, σ2
λ(k)), where

σ2
λ(k) = σ2

1(k)/R4(k − 1),

σ2
1(k) =

µ∗
jj

µjj

s
∑

i=1

µ2
ii

µ∗
ii

{

R2(k)
s

∑

j=1

[

DU
ij − 1{i∈U}

∑

t∈U

α(t)Ψti

]2

∗ qij(k − 1)

+R2(k − 1)

s
∑

j=1

[

DU
ij − 1{i∈U}

∑

t∈U

α(t)Ψti

]2

∗ qij(k) − T 2
i (k)

+2R(k − 1)R(k)

s
∑

j=1

[

1{i∈U}D
U
ij

∑

t∈U

α(t)Ψ+
ti + 1{i∈U}(D

U
ij)

+
∑

t∈U

α(t)Ψti

−(DU
ij)

+DU
ij − 1{i∈U}

(

∑

t∈U

α(t)Ψti

)(

∑

t∈U

α(t)Ψ+
ti

)]

∗ qij(k − 1)
}

, (4)

with

Ti(k) :=

s
∑

j=1

[

R(k)DU
ij ∗ qij(k − 1) −R(k − 1)DU

ij ∗ qij(k)

−R(k)1{i∈U}

∑

t∈U

α(t)ψti ∗Qij(k − 1) +R(k − 1)1{i∈U}

∑

t∈U

α(t)ψti ∗Qij(k)
]

,

DU
ij :=

∑

n∈U

∑

r∈U

α(n)ψni ∗ ψjr ∗
(

I − diag(Q · 1)
)

rr
,

µ∗
ii is the mean recurrence time of state i for the embedded Markov chain (Jn)n∈N, µii is the mean recurrence

time of the state i for the DTMRP (J, S) and A+(k) := A(k + 1) for A =
(

Aij(·)
)

i,j∈E
.

Corollary 1 For any fixed k ∈ N, the RG−failure rate estimator r̂(k,M) is strongly consistent, as M tends

to infinity, and we have
√
M [r̂(k,M) − r(k)]

D−−−−→
M→∞

N (0, σ2
r (k)), where

σ2
r(k) = σ2

1(k)/
[

R2(k − 1)R2(k)
]

, with σ2
1(k) given in Equation (4).

Replacing q(k), Q(k), ψ(k),Ψ(k) by their estimators in Equation (4), we obtain a strongly consistent estima-
tor σ̂2

λ(k) of the variance σ2
λ(k). Let γ ∈ (0, 1) and uγ be the γ− quantile of N(0, 1). For k ∈ N, k ≤ M, the

estimated asymptotic confidence interval of BMP-failure rate λ(k) at level 100(1 − γ)% is given by

λ̂(k,M) − u1−γ/2σ̂λ(k)/
√
M ≤ λ(k) ≤ λ̂(k,M) + u1−γ/2σ̂λ(k)/

√
M.

3 Numerical example

Let the state space E = {1, 2, 3} be partitioned into the up-state set U = {1, 2} and the down-state set
D = {3}. The system is defined by the initial distribution µ := (1 0 0), by the transition probability matrix
V of (Jn)n∈N and by the conditional distribution matrix of the sojourn times f given by

V :=





0 1 0
0.95 0 0.05
1 0 0



 , f(k) :=





0 f12(k) 0
f21(k) 0 f23(k)
f31(k) 0 0



 , k ∈ N,

• f12 is a geometric distribution defined by f12(0) := 0, f12(k) := p(1 − p)k−1, k ≥ 1, with p = 0.8,



• f21 := Wq1,b1 , f23 := Wq2,b2 and f31 := Wq3,b3 are discrete time, first type, Weibull distributions,

defined by Wq,b(0) := 0, Wq,b(k) := q(k−1)b − qkb

, k ≥ 1, with q1 = 0.5, b1 = 0.7, q2 = 0.6, b2 = 0.9, q3 =
0.5, b3 = 2 (for discrete time Weibull distribution, see, e.g., Nakagawa and Osaki 1975).

Figure 1 gives the empirical estimator and the confidence interval at level 95% for the BMP−failure rate
(left) and a comparison between BMP−failure rate estimators obtained for different sample sizes (right).
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Figure 1: BMP− failure rate confidence interval and BMP− failure rate estimator consistency
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